“Usando dados da Voyager, nós descobrimos um forte campo magnético logo do lado de fora do sistema solar,” explica o líder da pesquisa, Merav Opher da Universidade de George Mason.
“Este campo magnético mantém a nuvem interestelar junta, e soluciona o mistério de como ela pode existir.
A descoberta tem implicações para o futuro onde o sistema solar irá eventualmente atingir outras nuvens similares no braço da nossa galáxia.
A nuvem por onde estamos passando agora é chamada pelos astrônomos de Nuvem Interestelar Local, ou “Nuvem Local” para encurtar. Ela tem cerca de 30 anos-luz de comprimento, e contém uma mistura de átomos de hidrogênio e hélio à uma temperatura de 6000 ºC. O mistério da existência da Nuvem tem a ver com seus arredores. Há cerca de 10 milhões de anos atrás, um aglomerado próximo de supernovas explodiu, criando uma gigantesca bolha de gás. A Nuvem está completamente cercada por esse gás em alta pressão, e deveria ter sido esmagada ou dispersada por ele.
“A temperatura e densidade observadas da Nuvem Local não providencia pressão suficiente para resistir à pressão do gás quente em volta dela,” diz Opher.
Então, como a Nuvem sobreviveu? As Voyagers encontraram a resposta.
“Dados da Voyager mostram que a Nuvem está mais magnetizada do que qualquer um suspeitava – entre 4 e 5 microgauss,” diz Opher. “Este campo magnético pode providenciar a pressão extra necessária para resistir à destruição.”
As duas sondas Voyager da NASA estão viajando para fora do Sistema Solar por mais de 30 anos. Elas agora estão além da órbita de Plutão e prestes a entrar no espaço interestelar – mas eles não estão lá ainda.
“As Voyagers não estão exatamente dentro da Nuvem Local,” diz Opher. “Mas elas estão chegando mais perto, e já podem detectar características da Nuvem.”
A Nuvem está sendo mantida à distância pelo campo magnético do Sol, que foi inflado pelo vento solar até virar uma bolha magnética de mais de 10 bilhões de km de diâmetro, chamada de “heliosfera,” esta bolha age como um escudo que ajuda a proteger o sistema solar interior dos raios cósmicos e nuvens interestelares. As duas Voyagers estão localizadas na camada mais externa da heliosfera, conhecida como “heliosheath,” onde o vento solar é desacelerado pela pressão do gás interestelar.
A Voyager 1 entrou na heliosheath em Dezembro de 2004; a Voyager 2 entrou em Agosto de 2007, quase 3 anos depois da sua irmã. Estas entradas foram uma peça fundamental para a descoberta de Opher e sua equipe.
O tamanho da heliosfera é determinado por um balanço de forças: Vento solar infla a bolha do lado de dentro, enquanto a Nuvem Local a compressa do lado de fora. Quando as Voyagers entraram no heliosheath, elas revelaram o tamanho aproximado da heliosfera, e portanto, quanta pressão a Nuvem Local exerce. Uma porção desta pressão é magnética e corresponde aos ~5 microgauss que a equipe de Opher relatou no jornal Nature.
O fato de que a Nuvem é fortemente magnetizada significa que outras nuvens na vizinhança galáctica também podem ser. Eventualmente, o sistema solar irá entrar em alguma delas, e seus fortes campos magnéticos podem comprimir a heliosfera ainda mais do que já está agora. Compressão adicional poderia permitir que mais raios cósmicos entrem no sistema solar interior, possivelmente afetando o clima Terrestre e a habilidade dos astronautas de viajar com segurança pelo espaço. Por outro lado, os astronautas não precisariam viajar tanto, já que o espaço interestelar estaria mais próximo do que nunca. Estes eventos poderiam ocorrer em escalas de tempo de dezenas à centenas de milhares de anos, o que corresponde ao tempo que leva para o sistema solar se mover de uma nuvem para outra.
“Tempos interessantes podem estar chegando!” disse Opher.